
Contributing to
WordPress Core

Jonathan Desrosiers
@Desrosj

About Me

• Been using WordPress for 8+ years.

• Plugin developer, Theme developer, everything in
between.

• Core contributor (credited in 4.4, 4.2, 4.1, 3.7, and
3.6)

About Me
• Web Developer III at Boston University

• bu.edu/id

http://bu.edu/id

Congratulations!
You are taking initiative!

Congratulations!
WordPress would not be what it is today without

contributions from people like you.

What took you so long?

• Too busy.

• Don’t know how.

• I am not really an expert.

• I’m intimidated.

Zip It

Every. Little. Thing. Counts.

What took you so long?

Everyone Starts
Somewhere!

How did current leaders in the WordPress community
start contributing to core?

John Blackbourn (Johnbillion)
4.1 Release Lead

Drew Jaynes (drewapicture)
4.2 Release Lead

Konstantin Obenland (Obenland)
4.3 Release Lead

Scott Taylor (wonderboymusic)
4.4 Release Lead

Dominik Schilling (ocean90)
4.6 Release Lead

Jonathan Desrosiers (Desrosj)  
Future Release Lead?

Everyone Starts
Somewhere

Little changes add up to make WordPress great!

What we’ll cover Today
• Discuss the many ways to contribute to WordPress.

• Talk about how the WordPress Core development
process works.

• Discover the tools you will need to become familiar
with.

• Dive in and get our hands dirty with a little code.

• Make WordPress contributions!

Make Wordpress -
Contributor Groups

• Make WordPress
(make.wordpress.org)
is a set of blogs that
relate to the different
contributor groups that
help develop
WordPress.

http://make.wordpress.org

Community Team

If you’re interested in organizing a meetup or a WordCamp, the
community blog is a great place to get started. There are groups
working to support events, to create outreach and training
programs, and generally support the community.

Support Team
The Support Team is responsible for all things support
related.

• Answer support questions in the forums on
WordPress.org

• Answer questions in WordPress.org Slack

Everyone knows the answer to something!

http://WordPress.org
http://WordPress.org

The Documentation Team is responsible for all things
documentation, including the Codex, handbooks,
developer.wordpress.org, admin help, inline docs, and
other general wordsmithing across the WordPress project.

• Update and edit the Codex

• Helping out with the handbooks

• Updating WordPress’ inline documentation

• Helping to build developer.wordpress.org

Documentation Team

http://developer.wordpress.org

The Training Team creates downloadable lesson plans and
related materials for instructors to use in a live workshop
environment.

• Writing – Create lesson plans.

• Copyediting – Check lesson plans for grammar, spelling and
punctuation. Make sure they align with our style guide.

• Testing – Run tests of our beta lessons at Meetups or workshops and
give us feedback.

• Auditing – Check content for accuracy with the current version of
WordPress

Training Team

The TV team reviews and approves every video submitted
to WordPress.tv. They also help WordCamps with video
post-production and are responsible for the captioning and
subtitling of published videos.

• Post-production

• Subtitles/captions

TV Team

Polyglot Team
WordPress is used all over the world and in many different
languages. If you’re a polyglot, help out by translating
WordPress into your own language.

• Suggest text translations at translate.wordpress.org

http://translate.wordpress.org

Theme Review Team

The Theme Review Team reviews and approves every
Theme submitted to the WordPress Theme repository.
Reviewing Themes sharpens your own Theme development
skills.

Accessibility Team

The a11y team provides accessibility expertise across the
project. They make sure that WordPress core and all of
WordPress’ resources are accessible.

Themes & Plugins

Create your own WordPress Themes & Plugins, and submit/
release them in the WordPress.org repositories.

http://WordPress.org

Make WordPress -
Contributor Groups

See? There are a ton of ways to get involved, even if you
have little or no knowledge of code!

Core Team

Let’s learn about how WordPress core is developed and
maintained.

• WordPress version releases (X.X) run on 4 month release
cycles (3 releases per year).

• Minor bug fix and security releases (X.X.X) happen
whenever necessary in between version releases.

• Deadlines are not arbitrary, even if they force things to be
trimmed.

WordPress Release Cycle

• We’re never done with simplicity. We want to make
WordPress easier to use with every single release.

• The core of WordPress will always provide a solid array of
basic features. It’s designed to be lean and fast and will
always stay that way.

• Core should provide features that 80% or more of end
users will actually appreciate and use.

• Decisions, not Options

WordPress Release Cycle -
Philosophies

• New features are no longer developed directly in core.

• Features are now developed as focused plugins.

• When the plugin is deemed “ready” it is submitted via a
proposal to the core team for review.

• When approved by core committers, the code is revised
to fit into WordPress core and committed.

WordPress Release Cycle -
Feature Plugins

WordPress Release
Cycle - Feature Plugins
Little changes add up to make WordPress great!

WordPress Release
Cycle - Feature Plugins
Little changes add up to make WordPress great!

• Started in June 2013 as a Google Summer of Code
project.

• 3,948 commits and counting.

• 88 different code contributors.

WordPress Release Cycle -
Feature Plugins

Tools

All WordPress development related conversation happens
in Slack.

• Really great for tapping into the “heart beat” of the
development process.

• Meetings happen here.

• General discussion about tasks.

Tools

Let’s check it out!

Tools - Trac

The most important WordPress Core  
development tool.

Trac is the ticketing system that organizes all ongoing
development in WordPress.

Tools - Trac

Let’s check it out!

The following are tools you will need locally in order to
contribute code to WordPress Core:

• Your favorite code editor.

• A local development environment (MAMP, XAMP,
Vagrants, etc.)

• A working copy of the WordPress repository trunk branch

• A subversion client such as TortoiseSVN on PC or
Cornerstone/Versions on Mac (if you are not comfortable
with command line)

Tools - Local Machine

Setting up our local
development environment

Let’s discuss what development stack we are going to set
up today. 
 
 
https://make.wordpress.org/flow/2016/02/08/testing-
patches-with-vvv-on-mac-os/

Setting up our local
development environment

virtualbox.org

Allows an unmodified operating system with all of its
installed software to run in a special environment, on top
of your existing operating system. This environment,
called a "virtual machine", is created by the virtualization
software by intercepting access to certain hardware
components and certain features.

http://virtualbox.org

Setting up our local
development environment

vagrantup.com
Vagrant is a tool for building
complete development
environments. With an easy-to-
use workflow and focus on
automation, Vagrant lowers
development environment setup
time, increases development/
production parity, and makes
the "works on my machine"
excuse a relic of the past.

http://vagrantup.com

Setting up our local
development environment

github.com/Varying-Vagrant-Vagrants/VVV

The primary goal of Varying Vagrant Vagrants (VVV) is to
provide an approachable development environment with a
server configuration common for high traffic WordPress
sites.

VVV is ideal for developing themes and plugins as well as
for contributing to WordPress core.

http://github.com/Varying-Vagrant-Vagrants/VVV

Setting up our local
development environment

virtualbox.org

vagrantup.com

putty.org (Windows users)

http://virtualbox.org
http://vagrantup.com
http://putty.org

Setting up our local
development environment

1. Ensure Vagrant installed successfully.  
 
 
 

Setting up our local
development environment

2. Install the vagrant-hostsupdater plugin  
 
 

Setting up our local
development environment

3. Install the vagrant-triggers plugin

Setting up our local
development environment

4. Change directory to where you want the vagrant folder
to reside.

5. Clone the VVV repo.

Setting up our local
development environment

6. Change directory to vagrant-local

Setting up our local
development environment

7. Start the vagrant

Setting up our local
development environment

• Little changes add up to make WordPress great!

8. Test it!

Next Steps

Types of Core Contribution
we will cover

1. Testing Patches

2. Creating Patches

1. Read the ticket and all interaction referencing it
thoroughly

• Gain full understanding of what the ticket is trying to
accomplish.

2. Look at when the patch was last created/refreshed.

• Patches older than 3-4 months may need to be
refreshed.

3. Review the patch.

• Understand what is being changed so you know what
to look for.

Testing Patches

Provide feedback on the ticket.

• Does the patch apply correctly?

• Is the ticket solved with the given patch?

• Are there any bugs or edge cases that you can
discover?

• Can you think of any negative effects as a result of the
patch?

• Is this the best approach to solving the problem?

Testing Patches

Testing Patches

Creating Patches
• Is the ticket still valid? Old tickets can become

• Is there a clear direction of what needs to be done?

• Is there any discussion about how to approach the
ticket? Sometimes there is an agreed upon solution
without a patch.

